Reality Doesn’t Exist until we Measure it, Quantum Experiment Confirms

Advertisement
Australian researchers have recreated a famous experiment and confirmed quantum physics's bizarre extrapolations about the nature of reality, by showing that reality doesn't really exist until we measure it - at least, not on the very small scale.

That all sounds a little mind-meltingly difficult, but the experiment poses a pretty simple question: if you have an object that can either act like a particle or a wave, at what point does that object 'decide'?

Our general logic would suppose that the object is either wave-like or particle-like by its very nature, and our calculations will have nothing to do with the answer. But quantum theory foretells that the consequence all depends on how the object is measured at the end of its journey. And that's precisely what a team from the Australian National University has now discovered.



"It proves that measurement is everything. At the quantum level, reality does not exist if you are not observing it," lead scientist and physicist Andrew Truscott said in a press release.

Known as John Wheeler's delayed-choice thought experiment, the experiment was first suggested back in 1978 using light beams bounced by mirrors, but back then, the technology required was pretty much impossible. Now, nearly 40 years later, the Australian team has succeeded to recreate the experiment using helium atoms scattered by laser light.

"Quantum physics predictions about interference appear odd enough when applied to light, which appears more like a wave, but to have done the experiment with atoms, which are complicated things that have mass and interact with electric fields and so on, adds to the weirdness," said Roman Khakimov, a PhD student who worked on the experiment.

To positively recreate the experiment, the team trapped a bunch of helium atoms in a suspended state known as a Bose-Einstein condensate, and then emitted them all until there was only a single atom left. 


This chosen atom was then dropped through a pair of laser beams, which made a grating pattern that performed as a crossroads that would scatter the path of the atom, much like a solid grating would scatter light.

They then arbitrarily added a second grating that recombined the paths, but only after the atom had previously passed the first grating.

When this second grating was added, it led to constructive or destructive interference, which is what you'd expect if the atom had travelled both paths, like a wave would. But when the second grating was not added, no interference was seen, as if the atom chose only one path.

The fact that this second grating was only added after the atom passed through the first crossroads proposes that the atom had not yet determined its nature before being measured a second time. 

So if you consider that the atom did take a specific path or paths at the first crossroad, this means that a future measurement was affecting the atom's path, explained Truscott. "The atoms did not travel from A to B. It was only when they were measured at the end of the journey that their wave-like or particle-like behavior was brought into presence," he said.

Although this all sounds extremely weird, it's really just a validation for the quantum theory that already governs the world of the very small. Using this theory, we've managed to develop things like LEDs, lasers and computer chips, but up until now, it's been hard to prove that it in fact works with a lovely, pure demonstration such as this one.  
This post was written by Usman Abrar. To contact the writer write to iamusamn93@gmail.com. Follow on Facebook

Quantum Physics

Reality

Science

Post A Comment: